فروشگاه گلد گیم

Ethereum: How to convert list into DataFrame in Python (Binance Futures API)

Converting List to Dataframe for positioning position in Python

As a cryptocurrency trader, having accurate and organized data is crucial for making knowledge. In this article, we will explore how to convert a price list from the Binance Futures API in a Pandas datoframe, which can be used to manage the position.

Premises:

  • Install binance_f library using PIP:PIP Install binance_f

  • Configure the API Binance credentials

  • Import the necessary libraries and set -va API key

Code:

Ethereum: How to convert list into DataFrame in Python (Binance Futures API)

`Python

from Binance_f Import RequestClient, command card

Configure API credentials and customer instance

api_key = 'your_pi_key'

api_secret = 'your_pi_secret'

Request_client = RequestClient (api_key = api_key, api_secret = api_secret)

Def convert_to_df (prices):

"" ""

Convert a price list to a Pandas dumframe.

Parameters:

Prices (List): List of prices to be converted

Returns:

pd.datrame: Dataframe converted

"" ""

command_book = request_client.get_orderbook ('btcub')

Create a dictionary for storing price and volume data

data = {

"Price": [],

"Volume": []

}

For entry into the order_book.entries:

If you enter.Price> Input. volume:

data ["price"]. Annex (input. Price)

Data ["volume"]. Annex (input. Volume)

DF = pd.dataframe (data)

Return DF

Example of use

Prices = [100.0, 120.0, 110.0, 130.0, 115.0]

Example prices for BTC-USD

DF = convert_to_df (prices)

Print (DF)

Explanation:

  • We first import the necessary libraries and configure our API credentials.

  • We create an instanceRequestClienta using our key and secret API.

  • The convert_to_df () function takes a price list as an input and uses the Binance Futures API to pick up a control card entry for each price.

  • For each input, add the price and volume data to a dictionary (“data”).

  • We create a Datoframe Pandas from the dictionary and return it.

  • In the section of use of the example, we demonstrate how to use convert_to_df () with a price list.

Tips and Variations:

  • You can change the convert_to_df () `to host different types of prices (for example, candles).

  • If you need to process additional data (for example, tendency analysis), you may want to use a more advanced library, such as “Pandas-Dareder”.

  • To optimize performance, consider the cache memory of API requests or the use of a tail -based approach for large volume data management.

Following this article and adapting it to your specific needs, you can efficiently convert the price list to a Pandas Datoframe for positioning position in Python.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

فیلدهای نمایش داده شده را انتخاب کنید. دیگران مخفی خواهند شد. برای تنظیم مجدد سفارش ، بکشید و رها کنید.
  • عکس
  • شناسه محصول
  • امتیاز
  • قیمت
  • در انبار
  • موجودی
  • افزودن به سبد خرید
  • توضیحات
  • محتوا
  • عرض
  • اندازه
  • تنظیمات بیشتر
برای مخفی کردن نوار مقایسه، روی آن کلیک کنید
مقایسه